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Methods: We ascertained five individuals with monoallelic pathogenic variants in MORC2, previously
associated with three dominantly inherited phenotypes: an axonal form of Charcot-Marie-Tooth disease
type 2Z; a syndrome of developmental delay, impaired growth, dysmorphic facies, and axonal neurop-
athy; and a rare form of spinal muscular atrophy.
Results: One of these individuals bore a strong phenotypic resemblance to CS. We then identified
monoallelic pathogenic MORC2 variants in three of five genetically unsolved individuals with a clinical
diagnosis of CS. In total, we identified eight individuals with MORC2-related disorder, four of whom had
clinical features strongly suggestive of CS.
Conclusions: Our findings indicate that some forms of MORC2-related disorder have phenotypic simi-
larities to CS, including features of accelerated aging. Unlike classic DNA repair disorders, MORC2-related
disorder does not appear to be associated with a defect in transcription-coupled nucleotide excision
repair and follows a dominant pattern of inheritance with variants typically arising de novo. Such de novo
pathogenic variants present particular challenges with regard to both initial gene discovery and diag-
nostic evaluations. MORC2 should be included in diagnostic genetic test panels targeting the evaluation
of microcephaly and/or suspected DNA repair disorders. Future studies of MORC2 and its protein product,
coupled with further phenotypic characterization, will help to optimize the diagnosis, understanding,
and therapy of the associated disorders.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Cockayne syndrome (CS), one of the classic inherited DNA repair
disorders, is associated with multiorgan system complications,
including neurodevelopmental/intellectual disabilities, micro-
cephaly, poor growth, visual impairments (corneal opacification
and/or cataracts), sensorineural hearing loss, demyelinating neu-
ropathy, hepatic involvement, kidney dysfunction, skin photosen-
sitivity, and dental anomalies.1-5 The two classic genes associated
with CS are ERCC6 (CSB) and ERCC8 (CSA), whose protein products
are key components of transcription-coupled nucleotide excision
repair (TC-NER).6,7 Owing to phenotypic overlap with other DNA
repair disorders such as subsets of xeroderma pigmentosum (XP)
and trichothiodystrophy, individuals who present with clinical
signs of CS may also have pathogenic variants in ERCC1,8 ERCC2
(XPD),9 ERCC3 (XPB),10 ERCC4 (XPF),11 ERCC5 (XPG),12 and XPA.13 A
broad genetic test panel that includes both the two classic genes
and other related genes such as these will yield the diagnosis in
many cases. However, some individuals with features of CS remain
genetically undiagnosed despite extensive testing.

The protein encoded by MORC2 (MIM:616688), named micro-
rchidia CW-type zinc finger 2 (MORC2), is part of a superfamily of
proteins involved in chromatin remodeling, epigenetic transcrip-
tional regulation, DNA repair, and fatty acid biosynthesis.14-18

Characterization of germline de novo and rare inherited mono-
allelic dominant mutations has connected MORC2 with three
overlapping phenotypes: Charcot-Marie-Tooth disease type 2Z; a
syndrome of developmental delay, impaired growth, facial dys-
morphia, and axonal neuropathy; and rarely an adult-onset form of
non-5q spinal muscular atrophy.19-21

It has come to our attention that some individuals with patho-
genic variants in MORC2 were initially given a clinical diagnosis of
CS, leading us to explore this potential association further.
Methods

Ascertainment and enrollment

The cohort was ascertained via the Amy and Friends Cockayne
Syndrome (CS) and Trichothiodystrophy (TTD) Support Group and
the UK National CS/TTD Service. This was either through direct
contact with families or indirectly through enrollment in
80
collaborators' protocols, yielding an international cohort of in-
dividuals known to have pathogenic variants in MORC2 and in-
dividuals with CS phenotypes whose clinical testing did not yield a
clear genetic diagnosis. All participants were enrolled through
protocols approved by the University of Minnesota Institutional
Review Board or by ethics committees at collaborating institutions,
including a biorepository at Guy's and St. Thomas's Hospital (United
Kingdom) of genetically unsolved CS cases, Imperial College and
The Portland Hospital London (United Kingdom), the Universit�e de
Strasbourg (France), University Children's Hospital Zürich
(Switzerland), and the Montreal Children's Hospital and McGill
University Health Center Research Ethics Board.
Clinical data collection and analysis

Clinical and genetic test data were gathered from participating
families and collaborators after enrollment. Data categories
included gender/sex, age at onset, age at clinical diagnosis, birth
history, developmental history, family history, growth parameters,
visual complications, hearing loss, neurological complications, he-
patic and/or renal involvement, skin photosensitivity, dental con-
cerns, neuroimaging findings, electromyography findings, and
clinical genetic test results. A CS diagnostic score that includes
clinical and neuroradiological features, along with a CS severity
score that includes anthropometric and neurological measures, was
calculated for each participant.2
Genetic screening for MORC2 variants in undiagnosed participants

Sanger sequencing for MORC2 was performed on genomic DNA
(gDNA) from five individuals with a clinical diagnosis of CS who did
not have pathogenic variants in genes known to be associated with
CS on clinical genetic testing. We designed 16 primer pairs to
amplify all 26 exons. Potential primers were assessed for basic
primer criteria including melting temperature, hairpins, self-
complementarity, and specificity using OligoCalc (v.3.27) and
NCBI Primerblast 8. PCR was performed on gDNA using Jumpstart
Taq Polymerase (MilliporeSigma) or Q5 Hot Start High Fidelity
Polymerase (NewEngland Biolabs). The PCR products were purified
using ExoSAP-IT (ThermoFisher Scientific) before being sent to the
University of Minnesota Genomics Center or Eurofins for Sanger
sequencing. Chromatograms were analyzed using Chromas Pro
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(v.2.1.10); variants were annotated and assessed using UCSC
Genome browser, dbSNP, ClinVar, CADD (V. GRCh38-1.6), Poly-
Phen2, gnomAD, and PROVEAN/SIFT.22-29 Pathogenicity categories
were assigned using American College of Medical Genetics (ACMG)
standards and guidelines for variant interpretation.30 All variants
were reported for transcript NM_001303256.3(MORC2).
Results

Demographic and genetic data

Participants were numbered in order of the pathogenic variant
positions identified inMORC2, from 50 to 30. Ages of the participants
ranged from three to 27 years. All participants were reported to
have symptom onset in the first six to 18 months of life, most
commonly presenting initially with developmental delay. There
was some variability in their original clinical diagnosis: Participants
3 to 6 were all suspected of having a DNA repair disorder such as CS
before the identification of pathogenic MORC2 variants, whereas
the remaining participants were found to have pathogenic MORC2
variants during evaluations for other presentations. Five individuals
with various clinical presentations located in the United States,
Germany, Canada, France, and the United Kingdom (participants 1,
2, 6, 7, and 8, respectively) were previously confirmed to have
pathogenic/likely pathogenic variants in MORC2. Participant 6 was
recently published in a case report.31 A UK-based biorepository
with CS phenotypes (Fig 1) was screened forMORC2 variants. These
individuals did not have mutations in any of the 14 genes used to
screen for mutations in nucleotide excision repair genes. Three of
these five tested positive for monoallelic pathogenic MORC2 vari-
ants (participants 3, 4, and 5), including two siblings (participants 3
and 4), bringing the total cohort to eight individuals in seven
families (Table 1). The pathogenic MORC2 variants were confirmed
to be monoallelic in all affected individuals, as well as de novo by
trio testing in all affected individuals. Participants 3 and 4 were
siblings carrying the same variant, with parental testing indicating
FIGURE 1. (A-C) Images of the face, hands, and feet from participant 3 showing enophth
reticularis, and poor peripheral circulation. (D-F) Images of the face, hands, and feet from p
hands, and feet from participant 5 showed marked enophthalmos, retrognathia, fixed distal
neuropathy. Families consented for photography of all individuals shown. The color version
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that neither parent carried the variant somatically, indicating a high
likelihood of gonadal mosaicism in one of the parents. All patho-
genic variants were located in the ATPase region (Fig 2). Partici-
pants 1 to 6 all carried disease-causing variants that affected the
GHKL domain, whereas participants 7 and 8 had pathogenic vari-
ants in the S5 domain. Fibroblasts from the four participants with
MORC2 variants that were tested showed a normal response in
recovery of RNA synthesis after UV irradiation, the gold-standard
test for cells deficient in genes involved in TC-NER (Table 1).
Neurological manifestations

All participants had neurological symptoms (Table 2). Of the
eight participants, four had microcephaly (<5th percentile),
whereas another had a head circumference at ~10th percentile. Of
the seven participants who achieved independent ambulation, all
experienced gait disturbances of varying severity, most often
related to balance. Other frequent signs and symptoms included
abnormal tendon reflexes (either increased or decreased) in six of
eight participants, as well as tremors in five of eight participants.
Participants 1, 2, and 5 to 8 had at least one brain magnetic reso-
nance imaging (MRI), and the reports were reviewed in all (original
images were unavailable for review). Neuroimaging in participants
6 to 8 demonstrated cerebellar and vermian atrophy, as well as
increased T2 signal in subjects 1, 6, and 7, localizing to the parietal
region for participant 6 and to the basal ganglia in participant 7.
Participant 2 had normal brain MRI results at age 2 years 4 months,
but has not had amore recent imaging reported. Participant 5 had a
brain MRI in early childhood, but no abnormal findings were re-
ported; this is also the only participant who experienced seizures.
Three participants had increased muscle tone, and five participants
had decreased tone. No participants had muscle biopsy reports
available at this time. Proximal and distal limb weakness was
present in participants 1 to 4 and 7, but not in participants 6 or 8.
Limb strength in participant 5 was not documented. Participant 1
experienced upper limb weakness, participants 3 and 4 had lower
almos, mouth with incompetent lips, prominent teeth, emerging retrognathia, livedo
articipant 4, sibling of participant 3, showing similar features. (G-I) Images of the face,
contractures in the feet with overlapping toes, and pes cavus suggestive of a peripheral
of this figure is available in the online edition.



TABLE 1.
Summary of Participant Genetic and Clinical Information

Case # Genetic Clinical

Nucleotide
Change

Amino Acid
Change

Domain Previously
Reported

Classification Inheritance RRS Testing Symptom Onset Age When
MORC2
Variant Was
Identified

Current Age Phenotype Clinical CS
Diagnostic
Score2

CS Severity
Score2

1 c.79G>A p.(Gly27Lys) GHKL þ Pathogenic De novo ND 6 m 16 y 17 y Spastic diplegic CP 8 9
2 c.260C>T p.(Ser87Leu) GHKL þ Pathogenic De novo ND 6 m 4 y 8 y CMT2Z 6 9
3 c.263C>T p.(Ala88Val) GHKL þ Pathogenic De novo* Normal 18 m 20 y 20 y CS-like 8 5
4 c.263C>T p.(Ala88Val) GHKL þ Pathogenic De novo* ND 12 m 19 y 19 y CS-like 10 5
5 c.298T>C p.(Tyr100His) GHKL e Likely Pathogenic De novo Normal 3 y �24 y 27 y CS-like 11 6
6 c.394C>T p.(Arg132Cys) GHKL þ Pathogenic De novo Normal 17 m 14 y 15 y CS-like 10 6
7 c.1238T>C p.(Val413Ala) S5 þ Likely Pathogenic De novo Normal 9 m 3 y 4 y Global dev. delay 6 7
8 c.1280A>G p.(Lys427Arg) S5 e Likely Pathogenic De novo ND <1 y 3 y 3 y CMT2Z 4 11

Abbreviations:
CMT ¼ Charcot-Marie-Tooth disease
CP ¼ Cerebral palsy
CS ¼ Cockayne syndrome
dev. ¼ Developmental
GHKL ¼ Gyrase protein domain
ND ¼ Not done
RRS ¼ Recovery of RNA synthesis after UV irradiation
S5 ¼ Ribosomal protein S5 domain
Note: All subjects were monoallelic for disease-causing MORC2 variants. Participant 6 was previously published.31 All variants are annotated for transcript NM_001303256.3(MORC2). CMT, Charcot-Marie-Tooth disease; CS,
Cockayne syndrome; dev, developmental; GHKL, gyrase protein domain; S5, ribosomal protein S5 domain; ND, not done; RRS, recovery of RNA synthesis after UV-irradiation.; y, years; m, months; CP, cerebral palsy.

* Participants 3 and 4 are full siblings; parental testing was negative for the MORC2 variant in question, indicating gonadal mosaicism.
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FIGURE 2. (A) A schematic diagram of the MORC2 protein domain structure. The ATPase module is at the N terminus including the GHKL, CC1, and S5 domains. (B) An inset of the
diagram from (A) demonstrating the locations of the pathogenic variants in the current cohort. All pathogenic variants localize to the ATPase module. The color version of this figure
is available in the online edition.
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limb weakness, and participants 2 and 7 experienced upper and
lower limb weakness. Participant 2 had severe weakness, never
achieving independent ambulation.

Neurodevelopmental features

All participants except for individual 8 were reported to have
intellectual disability and attended special needs programs at
school. Language abilities were notable for limited vocabulary,
short sentences, and the use of sign language and gestures.

Musculoskeletal manifestations

Participants 2, 3, 4, and 5 had contractures, and participants 2
and 6 had scoliosis, which was mild in the latter.

Other organ systems involvement

All participants had short stature. Hearing loss was noted in
participants 1 and 3 to 7. Retinal dystrophy was also confirmed in
participants 1, 3, and 6 and suspected in subject 5 with confirma-
tion pending. Subject 4's family declined testing for retinal dys-
trophy. Participants 1, 3, 4, and 6were also noted to have vision loss.
Participant 3 had exotropia of the left eye and a concern about
possible retinopathy was raised; however, this was not confirmed.
Participant 2 exhibited glaucoma and intermittent strabismus but
not retinal dystrophy. Participants 3, 5, and 6 had dermatologic
issues, but were not confirmed to have the skin photosensitivity
that is seen in CS. Participant 3 developed a possible photo-
aggravated eczema on his hands. Participant 5 has had mild sun-
burn reactions during the summermonths that can be alleviated by
the application of sunscreen alone. Participant 6 had a “poly-
morphous light eruption,”which lacked several features associated
83
with CS photosensitivity. Participants 1 and 4 to 6 had frequent
dental caries. Participants 2 and 6 had chronic constipation. Par-
ticipants 5 and 6 had hyperthyroidism and precocious puberty,
respectively. Participants 1 to 4 were noted to have vitamin D
deficiency, whereas participants 5 and 7 did not, and participants 6
and 8 were not assessed for this at the time of data collection.

Comparison of CS versus MORC2 phenotypic classification

The frequency of CS-related symptoms, including hearing loss,
weakness, retinal dystrophy, seizures, and thyroid dysfunction all
occurred at similar rates in our cohort compared with prior reports
of individuals with CS (Fig 3A).1,5 Each participant was assessed
using recently published criteria for assessing diagnostic likelihood
and clinical severity for CS.2 On this scale, participants 4 to 6 were
in the high likelihood range for CS based on clinical scores, whereas
participants 1 and 3 had scores that were in the moderate likeli-
hood range (Fig 3B). Participants 2, 7, and 8 had scores associated
with a lower probability of CS. Applying the severity scoring sys-
tem, the participant score median was 6.5 and ranged from 5 to 11,
resembling the patterns previously described the milder CS sub-
groups (Fig 3C).2

Discussion

The patterns and severity of clinical presentations associated
with pathogenic variants in MORC2 are variable, with a constella-
tion of phenotypes described in the literature.18,19,21,32 Some of
these studies have noted potential genotype-phenotype correla-
tions, with symptoms of a syndrome of developmental delay,
impaired growth, facial dysmorphia, and axonal neuropathy being
somewhat more commonly diagnosed in individuals with muta-
tions in the GHKL region of the ATP-binding domain of the protein,



TABLE 2.
Frequencies of Clinical Features

Total % Case #

1 2 3 4 5 6 7 8

Neurological
Gait abnormalities 7/7 100.0 þ N/A þ þ þ þ þ þ
A/hypo/hyper-reflexia 6/8 75.0 e þ þ þ e þ þ þ
Neuropathy, confirmed/suspected 6/8 75.0 e þ þ þ þ þ e þ
Axonal 2/5 40.0 e þ N/A N/A N/A þ e e

Abnormal brain MRI 4/6 66.7 þ e N/A N/A e þ þ þ
T2 hyperintensive signal 3/6 50.0 þ e N/A N/A e þ þ e

Cerebellar/vermian atrophy 3/6 50.0 e e N/A N/A e þ þ þ
Tremors 5/8 62.5 e þ e þ þ þ e þ
Seizures 1/8 12.5 e e e e þ e e e

Musculoskeletal
Muscle tone abnormalities 8/8 100.0 þ þ þ þ þ þ þ þ
Hypotonia 5/8 62.5 þ þ e e e þ þ þ
Hypertonia 3/8 37.5 e e þ þ þ e e e

Limb weakness 5/7 71.4 þ þ þ þ N/A e þ e

Proximal weakness 5/7 71.4 þ þ þ þ N/A e þ e

Distal weakness 5/7 71.4 þ þ þ þ N/A e þ e

Contractures 4/8 50.0 e þ þ þ þ e e e

Scoliosis 2/8 25.0 e þ e e e þ e e

Developmental
Short stature 8/8* 100.0 þ þ* þ þ þ þ þ þ
Motor developmental delay 8/8 100.0 þ þ þ þ þ þ þ þ
Intellectual disability 7/8 87.5 þ þ þ þ þ þ þ e

Facial dysmorphism 4/7 57.1 N/A e þ þ þ þ e e

Microcephaly 4/8 50.0 e e þ þ þ þ e e

Other
Hearing loss 6/8 75.0 þ e þ þ þ þ þ e

Vitamin D deficiency 4/6 66.7 þ þ þ þ e N/A e N/A
Dental caries 4/7 57.1 þ e NA þ þ þ e e

Retinopathyy 3/7y 42.9 þ e þ N/A ey þ e e

Dermatologic symptoms 2/8 25.0 e e þ e þ þ e e

Constipation 2/8 25.0 e þ e e e þ e e

Endocrine 2/8 25.0 e e e e þ þ e e

Hyperthyroid 1/8 12.5 e e e e þ e e e

Precocious puberty 1/8 12.5 e e e e e þ e e

Cataracts 1/8 12.5 e e e e e þ e e

Abbreviations:
MRI ¼ Magnetic resonance imaging
N/A ¼ Not applicable

* Borderline for short stature.
y Suspected to have retinopathy, confirmation pending.
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whereas Charcot-Marie-Tooth disease type 2Z diagnoses tended to
be associated with variants in the S5 domain.18,32 These are general
associations, however, and it is not possible to predict a phenotype
reliably based on genotype information alone.33

We suspect that there are two main reasons that the connection
between MORC2-related disorders and CS is only now coming to
light: the lack of evidence for TC-NER defects in MORC2 deficiency
in vitro and the autosomal dominant inheritance pattern. However,
this phenotypic link suggests that MORC2 may contribute to a
different aspect of gDNA homeostasis. Murine models with knock-
in mutations in the homologous gene Morc2a have shown accu-
mulations of DNA damage in nerve cells.34 Several hypotheses have
been postulated on the disease mechanism associated with MORC2
pathogenic variants, including the potential for pathogenic variants
to cause inappropriate responses to DNA damage. MORC2 con-
tributes to the complex process of chromatin remodeling that is
crucial at various steps of repairing double-stranded DNA breaks,
potentially through its DNA-dependent ATPase activity, so that
damaged DNA first becomes accessible for repair, and then returns
to its protected chromatin structure.16 In particular, MORC2 can
form a homodimer at its C-terminal coiled-coil domain that ap-
pears to facilitate the attenuation of histone-DNA interactions.35

As had been noted in prior studies, pathogenic variants in
MORC2 exhibit considerable variability in clinical manifestations.
84
No two participants had identical presentations even among sib-
lings found to carry the same mutation, as was seen in the case of
participants 3 and 4. Although all participants exhibited neuro-
logical and developmental symptoms, the specific symptoms var-
ied in each category. This is not unlike CS, which has also been
noted to exhibit phenotypic variability, making assessments of
clinical severity and prognosis difficult early in the disease course
based on initial presentation and the pathogenic variant. However,
the common themes that emerge from our MORC2 cohort are
strikingly similar in both form and frequency to those found in CS,
including neurodevelopmental, dermatologic, and metabolic ab-
normalities. Poor growth and microcephaly also occurred with
considerable frequency, mirroring findings in CS.1

Participants 2, 7, and 8 had the mildest phenotypes, exhibiting
fewer symptoms that primarily involved the peripheral nervous
system, and their CS diagnostic likelihood scores were consistently
lower. These individuals would not likely meet clinical criteria for
CS. It has been noted that certain variants are associated with pe-
ripheral versus central symptoms; pathogenic variants in the S5-
fold region tend to manifest with peripheral symptoms,18 which
is where the variants for participants 6 and 7 were identified.
However, these three participants are also the youngest in the
cohort, and it is possible that they will develop more CS-like
symptoms over time.



FIGURE 3. (A) A graph indicating the frequencies of noted symptoms in our participants shows similar patterns to data from a classic prior study of CS.1 (B) A graph indicating the
distribution of CS likelihood scores using a published scoring system.2 (C) A graph indicating the distribution of CS severity scores based on clinical criteria, using a published scoring
system, with CS type III data from that publication shown for comparison.2 Note that a lower score indicates increased severity. The color version of this figure is available in the
online edition.

S.A. Stafki, J. Turner, H.R. Littel et al. Pediatric Neurology 141 (2023) 79e86
One striking genetic aspect of our findings is the dominant
pattern of inheritance, in contrast to the autosomal recessive
pattern seen in classic DNA repair disorders. Classically, dominant
pathogenic variants in severe inherited diseases were thought to be
rare. However, it has become increasingly recognized that such
dominant variants may occur, and that they tend to arise de novo, as
has been described in some forms of congenital myopathy36 and as
we have found in our cohort. Given that all of the pathogenic var-
iants in our cohort are missense changes affecting the ATPase re-
gion, we suspect that the disease mechanism is more likely to be
due to a toxic gain of function in a dominant negative manner,
given that the protein homodimerizes, rather than due to a loss of
function.

Understanding both the phenotypic spectrum of MORC2-
related disorder and the genetic spectrum of CS is of critical
importance. This knowledge has implications for genetic diag-
nostic evaluations, prognosis, ongoing clinical care, and genetic
counseling. Our findings point to a commonality in phenotypes
between classic CS and some individuals with pathogenic variants
in MORC2. Further studies are needed to elucidate the specific
molecular mechanisms by which these phenotypes arise. DNA
repair failure, epigenetic silencing, and metabolic disruption have
all been implicated as consequences of MORC2 dysfunction. It may
be that more than one of these pathways is involved, and that a
genotype-phenotype correlation may exist between which muta-
tion is noted and what pathway is affected. This in turn would be a
possible explanation for the wide spectrum of recognized pheno-
types. In cases in which CS is a diagnostic consideration, MORC2
should be included in genetic diagnostic panels. Individuals
confirmed to have pathogenic variants inMORC2may benefit from
multidisciplinary care akin to that needed for individuals with
classical forms of CS.
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